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Abstract

Static Single Assignment (SSA) form is a widely-used and effective intermediate repre-
sentation in optimizing compilers, which explicitly encodes def-use chains and enables
a wide range of optimizations. However, transforming native machine instructions to
SSA| poses additional challenges, due to register constraints, instructions modifying
input operands and other Instruction Set Architecture peculiarities. The aim of this
practical work is to implement SSA construction and destruction in the Native Code
Generator backend| (NCG)) of the Glasgow Haskell Compiler (GHC)). Beyond enabling
future optimizations, this will discover and rename webs for improved register allocation.
This leads to a reduction in inserted spill instructions of up to 27% for the graph coloring

register allocator.
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CHAPTER

Introduction

1.1 Haskell and GHC

Haskell'| is a purely functional programming language with lazy evaluation semantics.
To achieve pure functions, Haskell has pioneered the use of monads to model side-
effects[JW93]. It features a rich, static type system, which can be used to model program
constraints at compile time.

The main compiler for the language - the Glasgow Haskell Compiler (GHC) - was
first released in 1992 (see [HHJWO07]) and differs in its internal architecture from more
mainstream compilers for imperative languages.

Native
Codegen

LLVM
Haskell i> Core i> STG i> Cmm i> Codegen

Cc
Codegen

Input Intermediate Representations Backends

Figure 1: |GHC| compilation pipeline

Thttps://www.haskell.org/
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Figure [1) gives a high-level overview of used intermediate representations in GHC. After
parsing, GHC translates the program into an intermediate representation (IR) called
"Core", a simple, typed functional language based on SystemFo [SCIDOT]. Many
optimizations are performed in a "Core to Core" pass. Next, Core is lowered to STG,
a minimalist functional language for an abstract machine called the "Spineless Tagless
G-machine" [Jon92|, which aims to facilitate mapping of a non-strict functional language
to actual hardware. STG is then lowered to Cmm, GHC’s implementation of the C--
language [JRR99], a low level imperative language with an explicit stack.

GHC currently offers three backends. The C-backend? is the oldest one and considered
deprecated except for bootstrapping on new platforms. A backend utilizing the LLVM?
compiler infrastructure ([TC10]) is the most recent of the three, but suffers from pro-
hibitively long compile times. |GHCs default backend is the Native Code Generator
backend (NCGJ), which strives to balance compile times and speed of generated code.
NCG] is relatively simple and performs instruction selection, |[CFGrbased basic block
layout optimization, liveness analysis with dead code elimination and register allocation.
The vast majority of optimizations is performed in earlier phases.

At this stage, no intermediate representation is used, but a stream of machine instructions
with either physical registers or virtual registers (before register allocation) and some meta-
instructions (e.g., SPILL, RELOAD), which are substituted in the course of compilation.
Two register allocators are available, the default linear scan allocator and a Chaitin-
Briggs-style graph coloring allocator.

1.2 Motivation

While Haskell is known to be at the cutting edge in terms of type system features, like
adding generalized algebraic datatypes (GADTs), type families, kind polymorphism and
recently linear types [BBNT18|, code generation has received less attention.

The graph coloring register allocator has been removed from the standard optimization
flags (-02) in 20134 as it suffered a regression in performance of generated code and the
situation has not been remedied since.

Analyzing the short routine in Listing 1/submitted to GHC's issue tracker”, which exhibits
excessive spilling, reveals one fundamental problem.

The routine simply adds three records with nine Int fields each together in some arbitrary
permutation. Note the use of the BangPatterns language extension®, which forces

Zhttps://downloads.haskell.orqg/~ghc/9.0.1/docs/html/users_guide/codegens.
html#c-code—generator-fvia—-c — Accessed 5.3.2021

Jhttps://www.llvm.org/ — Accessed 5.3.2021

Yhttps://gitlab.haskell.org/ghc/ghc/~-/issues/7679|— Accessed 5.3.2021

Shttps://gitlab.haskell.org/ghc/ghc/-/issues/8048 — Accessed 5.3.2021

6https ://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/exts/
strict.html — Accessed 5.3.2021


https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/codegens.html#c-code-generator-fvia-c
https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/codegens.html#c-code-generator-fvia-c
https://www.llvm.org/
https://gitlab.haskell.org/ghc/ghc/-/issues/7679
https://gitlab.haskell.org/ghc/ghc/-/issues/8048
https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/exts/strict.html
https://downloads.haskell.org/~ghc/9.0.1/docs/html/users_guide/exts/strict.html

1.3. Renumbering

{—# LANGUAGE BangPatterns #-}
module Spill where
import GHC.Exts

data S = S !Int !Int !Int !Int !Int !Int !Int !Int !Int
deriving Show

spill :: S => S -> S8 -> S

spill (S 'a 'b !c !d e 'f !g 'h i)
S '3 'k 'l 'm !'n 'o !'p g 'r)
S !s 't lu v lw Ix !y 'z _)

(
(
(
a
a
]
s
a

=8 (a+ Jj+s) (b+c) (k+ r)
(a+ b+c+d+e+ £+ g+ h+ 1)
(] +k+1+m+n+ o+ p+ g+ r)
(s +t +u+v+w+x+vy+ z)
(a + b +c) (3 +k+1) (s + t + 1)

Listing 1: Example program triggering spill code insertion

strict evaluation of matched patterns. When compiled using the graph coloring register
allocator’}, it will insert 8 store and 9 load instructions for spilling.

Inspecting one spilled virtual register (vreg), $vI_nKI, we find that it is live in two
basic blocks, as can bee seen in Figure 2.

Looking at the assembly in Listing 2, we can see that vregl $vI_nKI gets redefined several
times, explicitly stored on the stack between the two basic blocks and even dies and gets
redefined within the same block. Using the same virtual register, name constrains the
graph coloring allocator to assign these disjoint live ranges to the same physical register,
increasing register pressure. These longer live ranges also may have more conflicts with
other live ranges, increasing likelihood of spilling.

1.3 Renumbering

Generally, a Chaitin-Briggs-style allocator would have a renumbering phase, which
discovers intersecting def-use chains (webs) and assigns them unique |virtual register
names [BCT94].

This is both important before register allocation can begin, in order to identify life
ranges, as well as during register allocation to identify newly created live ranges (e.g., via

"Using GHC 8.10.3, with ghc -02 —-fregs-graph —-ddump-asm-stats
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Figure 2: Control-flow graph of Listing 1, nodes with virtual register occurrence high-
lighted

spill code |

, N\

— renumber | build — coalesce [~ spill costs i simplify =i select —

Figure 3: Phases of a Chaitin-Briggs-style allocator

spilling or live range splitting). No such phase exists in NCG. vreg/s are created during
instruction selection in the Cmm-to-ASM pass. Further optimizations may disjoint live
ranges without renaming them. NCG’s graph coloring allocator only renames live ranges
during spilling, where it can locally generate a new name as it emits SPILL and RELOAD
meta-instructions around the original instruction.

One approach to renumbering uses classical iterative data-flow analysis. Def-use chains
are discovered by performing reaching definitions analysis, then pair-wise intersection
tests are performed to find common uses and union these intersecting def-use chains
together into a web. Representing def-use chains as lists, not only requires m * n space,
for m definitions and n uses, but is also computationally expensive.

Briggs’ seminal paper on optimistic coloring [BCT94] mentions that Chaitin’s original
graph coloring register allocator [CACT81] used this approach, whereas they utilized
Static Single Assignment (SSA]) form.



1.4. Static Single Assignment Form

cHO
movg Sblock_cHT_info, -64 ($rbp)
movqg 7 (%rbx),%vI_nKI # Definition of nKI
# [...]
movg %$vI_nKI, 80 (%rbp) # nKI dies
addg $-64, $rbp
testb $7,%bl
Jjne _blk_cHT
Jmp _blk_cHU

cJF
# [...]
movqg 144 (%rbp),$vI_nKI # Definition of nKI
movg $vI_nKI,%$vI_ndJY # nKI dies

# [...]
movqg %$vI_nKC, $vI_nKi # Definition of nKI
# [...]

Listing 2: Excerpt of generated assembly of spilling example

Transforming the program into SSA| form will create a new name for each definition of a
value and webs can then be simply found by applying the union-find algorithm. The big
advantage though of SSA| form is, that it enables a wide range of further optimizations.

1.4 Static Single Assignment Form

SSA|form is widely used in modern compilers, as it facilitates many optimizations and
analysis in an efficient manner [Sinl8|. Both data-flow and control-flow is explicit in SSA.

When transforming a program into |SSA| each (re-)definition of a variable introduces a
new name. Generally, an index is added to to the original variable name, incremented
with each definition. For example, the following side-by-side comparison before and after
renaming:

x =1 x 0 =1
X 1= x + 2 X 1 :=x_ 0+ 2
y 1= x + 3 y_0 :=x_1+3

As such, each name is defined exactly once and each definition dominates all of its uses.

At points where control-flow merges with conflicting definitions of a variable, ¢-functions
(also known as ¢-nodes) are inserted. A ¢-function is a function of the form z, :=
&(xo, 1, ..,Tn—1), where x,, is a new name for the value and ¢ has as many arguments
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as the basic block has predecessors. Conceptually, a ¢-function will "select” the right
version of x, depending on the actual path taken. ¢-functions represent parallel copies,
such that all ¢-functions at the beginning of a block are "executed" in parallel and their
"results" are in Livey, for the respective basic block [STGS99).

Several different flavors of [SSA| exist, namely:

o Minimal SSA, described in [CFRT91], inserts the minimal number of ¢-functions
for each join-point of the CFG where more than one [SSA-name per original name
merges.

e Pruned SSA, which performs liveness checks to only insert ¢-functions for variables
that are live in a given block. This can drastically reduce the number of ¢-functions,
but comes at the cost of having to perform global data-flow analysis for liveness,
plus the liveness checks on insertion [CCF91].

o Semi-pruned SSA will insert fewer (dead) ¢-functions, by performing a linear
scan over the code to weed out all local live ranges, that do not cross basic block
boundaries [BCHS9S].

1.4.1 SSA in the code generator

Some issues arise when choosing a |[SSA form code representation in a code generator.
Machine instructions of a real-world Instruction Set Architecture (ISA) will often not
conform to [SSA| constraints. For example, such an instruction may modify its operands
directly, making it impossible to assign a new name to the new value, e.g.: inc %rax -
which is equivalent to x1 := xg+1, or add $4, %rax which is x1 := 4+ x¢. Instructions
may also have implicit operands, like status registers, or some ISAs feature conditional
instructions, like this example of ARM assembly: cmp r0, #3; addlt r0O, rl, r2
orif (r0 < 3) then r0 := rl + r2 in pseudo-code.

Different approaches to handle these challenges will be addressed In chapters 2/ and 3|
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First we are looking at some older papers for approaches to live range discovery without
SSA. Chow and Hennessy [CH90| describe using data-flow analysis [Hec77] to solve
separately for the live and reaching definition attributes. Disjoint live ranges are not
renamed though, as they rely on their later splitting phase. Chaitin et al. |[CACTS8I|
call this step "getting the right number of names" and use global data-flow analysis to
achieve this. In his thesis, Briggs [Bril4] describes in more detail how they use union-find
on pruned SSA| form to this end, noting the efficiency gained having to only union the
definitions reaching a ¢-node, instead of having to union all definitions reaching each use.

ICFR91], the seminal paper on SSA| describes properties and an algorithm to compute
minimal SSAL [CCE91] introduces pruned SSA| which only inserts live ¢-functions and
Briggs et al. [BCHS98] describe some previously overlooked problems in SSA destruction,
as well as semi-pruned |[SSA| which is cheaper to compute, yet almost as small. Braun et
al. [BBH™13] present a simple and efficient lazy backwards algorithm to construction
SSA. Sreedhar et al. [SJGS99] describe an approach for |[SSA| destruction, [BDRT09)
suggest a more efficient algorithm and notes on correctness issues for SSA| destruction.

Leung et al. [LG99] discuss the problems regarding naming constraints for SSA form on
machine instructions and represent a scheme to convert between |SSA| and native code.
They propose a three phase approach, which first collects all naming constraints, then
marks nodes where these constraints are violated and finally a reconstruct phase to repair
the code, which is based on Briggs’s et al. SSA| destruction in [BCHS9S].

Dinechin [dD14] looks at the challenges SSA form in the code generator poses, like
ISA and ABI naming constraints, non-kill target operands and conditional execution
in general. They discuss different representations of instruction semantics and which
compilation phases benefit from SSA| i.e., phases before pre-pass scheduling, remarking
that there is still debate on the benefits for register allocation. The paper also features
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an extensive review on techniques for if-conversion, an optimization technique to replace
control flow with straight-line code of predicated or conditional instructions.

In [HGGOG6], Hack et al. present a graph coloring register allocator on |[SSA-form. They
show that the interference graphs of programs in SSA|form are chordal and that an
optimal coloring for such graphs can be found in polynomial time. Furthermore, spilling,
coloring and coalescing can be decoupled in this framework. However, coalescing becomes
NP-complete.

Linear Scan register allocation has also been extended to work on [SSA-form by Wimmer
et al [WEF10]. Their work uses properties of SSA-form and a block order, in which earlier
blocks always dominate later blocks, to significantly simplify the construction of lifetime
intervals. Most of the expensive lifetime interval interferences checks can be omitted with
the guarantees provided by [SSA-form, however the authors note that already split life
intervals are no longer in SSA-form and require these checks. The final resolution phase
also performs [SSA| destruction. As the core register allocation algorithm stays the same,
the quality of generated code remained the same. The authors reported a simplification
of the compiler code and measured reduction both in compile times and memory use.

Many code generation and optimization steps, like [SSA-destruction, may introduce
many register-to-register copies. The task of register coalescing is to eliminate as many
unproductive copies as possible and is typically performed as part of register allocation.
While it is generally beneficial to remove extraneous copies, it may have a big impact
on colorability of the graph, as two coalesced live ranges may have more conflicts. Park
and Moon [PM04] provide an overview of coalescing algorithms, as they present their
optimistic coalescing. Aggressive coalescing, as used in Chaitin’s [CACT81] allocator, will
coalesce any non-interfering, copy-related nodes in the interference graph. While this
removes many unproductive copies, it may also worsen colorability. Park and Moon note
however, that it may also positively impact colorability, if both coalesced nodes a and
b had an interference with node n prior to coalescing, as this lowers the degree of n by
one. Conservative coalescing, by Briggs et al. [BCT94], only coalesces two nodes if this
is guaranteed not to worsen colorability. Since conservative coalescing potentially misses
many opportunities for safe coalescing, George and Appel’s iterative coalescing |[GA9G]
interleaves conservative coalescing with the simplification phase of coloring, therefore
creating repeated opportunities for coalescing. Optimistic coalescing performs aggressive
coalescing, but splits live ranges again, when they have to be spilled.

Many improved techniques for SSA|destruction also seek to coalesce, or avoid inserting,
copies. Dinechin [dD14] gives an overview of SSA destruction algorithms in section 4,
discussing their different coalescing approaches.
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In the first implementation phase, |SSA| construction and destruction will be performed
back to back, in order to discover webs for register allocation. Because of this, we
compute pruned-SSA, as we are only interested in live variables. The necessary liveness
information is gathered in the existing liveness-pass, via fixed-point data-flow analysis,
which also eliminates dead code.

3.1 Machine Instruction Constraints

The [SSA| construction routine receives a linked list of basic blocks containing instructions
annotated with register usage and liveness information as input. The instructions are
pre-colored and contain references to physical registers for special purpose registers and
ABI| constraints. These are not promoted to |SSA| variables. While this simple approach
enables live range discovery, it won’t be enough for other analysis and optimizations,
e.g., moving liveness analysis after SSA| construction. One way to remedy this, would
be to promote references to physical registers to SSA|variables, for which a mapping to
the original register is kept. On [SSA! destruction, these variables are renamed to their
original register name, resolving any interferences introduced by optimizations. This
scheme was, however, not implemented.

Modifying instructions, e.g., single argument increment/decrement, 2-Address instruc-
tions, and conditional instructions are treated as non-kill definitions that won’t introduce
a new [SSAl name.

movg $1, %vI_x_0
inc $SvI_x_1
addg svI_y_ 0, S$vI_x_2

Listing 3: Wrong renaming of modified operands

Listings|3|and |4 show what would happen, if non-kill definitions were to be renamed naively.
In the case of source-destination operands (modified operands), they are constraint to
have the same name. If one were to treat them as normal SSA| variable, this constraint
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movg $1, %vI_x_0 # definition

addg %$vI_x_0, S$vI_y # use

cmov $0, S$vI_x_1 # Conditional defintion
addgq SvI_x_1, %vI_z # Error

Listing 4: Wrong renaming of conditional definition

would have to be modelled, e.g., by a three address instruction with explicit naming
constraint. On SSA| destruction, an additional copy to the newly named variable would
be necessary (Listing |5).

movg $1, %$vI_x_0

# [...]

movg %$vI_x_0, %SvI_x_1 # Copy to new name
addg %vI_y_0, %vI_x_1

Listing 5: Renaming with additional copy

Similarly, in Listing |4, the conditional move may not be executed, so using a new name
afterwards would not be correct. Since there are possibly two versions of %uvI, available,
something similar to a ¢-function would be necessary. To this end, [SAF01] introduces
-functions to model predicated execution.

By not renaming non-kill definitions, the destruction scheme described in section 3.3
produces correct code and achieves the goal of web renaming. Any future optimization
which moves code, must maintain the relative position of these not renamed instructions.

3.2 SSA construction

SSA| constructions follows the algorithm by Cytron et al. [CFR™91] with added liveness
checks.

A ¢-function is needed at every control flow join point, where multiple definitions of a
variable are live. Placing one for each variable in the program at each join point would
obviously create huge numbers of useless ¢-functions. To find out where to place ¢-nodes,
we need to look at the dominance property.

In a directed graph, a node n is said to dominate a node m, or m € Dom(n), if all paths
from the start node to m lead through n. n is said to strictly dominate m if m € Dom(n)
and n # m.

A variable definition in n clearly does not require a ¢-function in m, as by the dominance
property, every path to m must lead through n. Instead, ¢-functions are required at join
points just outside the region dominated by n. This dominance frontier of n, DF(n),
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is defined as m € DF(n),Vm,s.t. ¢ € Pred(m), g € Dom(n) and n does not strictly
dominate m.

We can then place a ¢-function for each definition in n at the beginning of every block in
DF(n). Each ¢-function is itself a definition and may induce further ¢-functions.

The next step is variable renaming, in which we introduce new names for each definition.
This new name consists of a base name, which corresponds to the original variable name
and a subscripted index. Compiler generated temporary names need to be assigned a
new base name as well.

For the renaming step, the Dominator Tree of the |[CFG| has to be computed. The node
m which strictly dominates and is closest to n, is called the immediate dominator of n
or IDom(n). The start node does not have an immediate dominator. Each node in the
CFG appears in the dominator tree and an edge connects m with n if m is in IDom(n).

The renaming algorithm walks the dominator tree in preorder. First, the ¢-function
definitions are renamed, then it iterates over each instruction in the block, replacing uses
with the current name on the name stack and creates new names for definitions, pushing
them on the name stack. Next, the ¢-function arguments are filled in for the successors
of the current block (in the |CFG) with the current names. Then the procedure recurs
into the block’s children in the dominator tree. After the recursive step, the name stacks
are restored to their initial state while entering this block.

3.3 SSA destruction

SSA| destruction is the process of transforming from [SSA| form into legal machine
instructions. This includes the correct elimination of ¢-functions. Many improvements
and corrections to the original destruction procedure have been proposed ([BCHS9§],
[BDRT09]). Transforming out of SSA|after optimizations have been performed requires
much care, as copies have to be placed carefully for correctness. Critical edges®|in the
CFG| have to be split for some of these approaches to work and algorithms have been
carefully designed to avoid this costly process.

Sreedhar et al. [SJGS99] describe the difference between conventional SSA (CSSA) and
transformed SSA (TSSA). Directly after SSA construction, before applying optimizations
like copy propagation or code motion, the code is in CSSA. Therefore, no interferences
have been introduced between |[SSA| variables. That paper also presents an algorithm to
transform TSSA back into CSSA.

Since |[SSA| destruction is performed immediately after SSA| construction in this implemen-
tation and no optimizations have been performed on the SSA| form, it is still in CSSA.
This allows for a straight forward and simple destruction algorithm. No copies need to
be inserted and complicated control flow, such as critical edges, can be ignored.

8 A critical node is an edge from a node with multiple successors to a node with multiple predecessors

11
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To convert out of |SSA|in this simple case, vregs have to be renamed in a way, such that
they form coherent webs. By performing a union-find over all ¢-functions in the code,
these webs can be built. All the sets associated with the ¢ argument names are unioned
with the defined name. Purely local vregs are not included and keep their name. Each
disjoint set produced this way, represents a web and all members of the set are renamed
to a common name.

CHAPTER

Implementation

4.1 Unique Names

GHC uses so called Uniques as identifiers internally, which allow for easy creation of
unique values by passing a unique source around. They are designed for fast comparisons
and are represented by an integer. Since virtual registers are identified by Uniques,
using the subscript based naming scheme common in [SSA|is not easily applicable. This
implementation simply generates completely new Uniques, with the drawback that
debugging becomes more difficult, as the connection between different Uniques is not
obvious.

4.2 Code Representation

4.2.1 Liveness

Each instruction is either a machine instruction or a meta-instruction (SPILL, RELOAD).
Register usage consists of a list of registers read and written per instruction. These
contain both virtual and physical registers. The liveness information contains three sets
of registers "born" (written to for the first time), dying because they were read for the last
time and because they were written to for the last time. Liver, sets are also provided
for each block.
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4.2.2 Phi-functions

For the SSA-form, LiveBasicBlocks are wrapped with SsaBasicBlocks, which also
contain a list of ¢-functions. Keeping them separate, instead of as pseudo-instructions
in the instruction list, makes it easier to identify and process them. This also avoids
introducing yet another intermediate representation, as adding ¢-functions as meta-
instructions to the current instruction type would mean, that they would have to be
handled even after SSA| destruction.

type LiveCmmDecl statics instr
= GenCmmDecl
statics
LiveInfo
[SCC (LiveBasicBlock instr)]

type LiveBasicBlock instr
= GenBasicBlock (LiveInstr instr)

Listing 6: GHC’s Live Code Representation

data SSABasicBlock instr
= SSABB [PhiFun] (LiveBasicBlock instr)

data SccBits a
= AcyclicBit a | CyclicBit Int a

type BlockLookupTable instr
= UnigDFM BlockId (SccBits (SSABasicBlock instr))

Listing 7: SSA Code Representation

4.2.3 Flattening SCCs

The [SSA| transformation for (GHC was designed to be minimally invasive and integrate
into the existing backend passes. Therefore, it has to deal with the current representation
for liveness annotated procedures. These don’t simply contain lists of basic blocks, but
instead lists of Strongly Connected Components (SCCs), where an acyclic SCC only
contains one basic block and a cyclic SCC| (representing a top-level loop) contains a
list of basic blocks. Listing 6| shows a simplified version of the data structures, where
LiveInfo contains the Livey, sets, among other things and GenBasicBlock contains
a BlockId and a list of live instructions.

13
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The |[SCCs are flattened into a list and each cyclic [SCC| is numbered, so that consecutive
SccBits can later be mapped to their corresponding acyclic SCCL This flattened list
is then stored in a map of basic block IDs to SccBits wrapped basic blocks, to enable
random access of blocks (Listing 7). The employed UnigDFM type is a deterministic finite
map of Uniques to elements and guarantees maintaining insertion order for deterministic
iteration, which is important for restoring the original structure. GHC/s Unique Map
and Set types are very efficient, as they are wrappers around Data.IntMap which is an
implementation of big-endian patricia trees [OG98|]. Most operations have a worst-case
time complexity of O(min(n,W)), where W is the word size in bits.

4.3 Pruned SSA

Since the main focus lies on improving register allocation, it is important to remove any
unproductive ¢-function. Otherwise bogus interferences may be added to the conflict
graph.

Before inserting x, = ¢(xq,..,Zn—1) in block b, a check is performed whether x €
Liver,(b), i.e., this variable was live in the original program at that point. This condition
is what yields pruned-SSA form.

An optimization was added, described in [CT11]: Each block should only be visited once
per variable. To this end, a visited set is set to the empty set for a new variable and
each block is added upon visit.

4.4 Efficient Renaming

One of the routines measured to be most resource intensive in the SSA| transformation, is
rename variables. As the rename routine iterates over the instructions in a block,
it renames encountered uses and definitions place new names on a stack. This global
name stack is needed, as the algorithm traverses the |CFG depth-first, where "deeper
lying" blocks may redefine a basename which is used in a direct successor of the current
block.

This solution keeps one stack for each name and a list of change-sets for the current
block nesting depth. As a new name for a [vreg is generated, it’s original name is added
to the local rename set. If it was already an element of that set, the current top of the
name stack is replaced, otherwise the new name pushed onto the stack. This makes sure,
that the name stack size does not grow with multiple redefinitions within blocks, but is
bounded by the depth of the dominator tree. After visiting all successors, the change-set
for the current block contains all the redefined basenames, whose top stack elements
must be removed, as the recursive function returns.
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4.5 Updating Liveness Information

To avoid having to recompute liveness information after SSA| destruction, it is kept
up-to-date during construction and destruction.

As|vregs are being renamed, so are their occurrences in the liveness information of the
current instruction and the Livey, sets. To get correct Livey, sets, it is necessary to first
process a blocks ¢-functions, as their definitions are considered to be in Livey,. Then all
names within the current block’s Livey, set are replaced with their new names from the
top of the rename stacks.

During [SSA| destruction, Liver, sets are updated while renaming webs. Each entry of
the set is replaced with its corresponding set-name in the union-find data-structure.

CHAPTER

Results

The implementation was evaluated using Haskell’s Nofib benchmark suite”, which contains
154 programs organized in 7 groups. All benchmarks were compiled with the same GHC
9.1 development version containing the |SSA|transformation patches, activatable by a
command-line switch and general optimizations (-02). The hardware used is a x86_ 64
machine with 16GB of RAM and an AMD Ryzen 7 4700U CPU with 8 cores. Benchmarks
were run five times each and average results for CPU cycles are shown.

The tables printed here focus on the real group, which contains larger benchmarks, aimed
at being more realistic.

5.1 vreg names

The data confirms, that most programs contain disjoint live ranges with the same [vreg
name, as can be seen in Table [1. All but eight programs showed an increase in unique
vreg after SSA| destruction. The median increase for the real group is 4.89% and 5.44%
overall, with the maximum increase being 21.04%.

“https://gitlab.haskell.org/ghc/nofib/ — Accessed 23.3.2021
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! [ Before SSA | After SSA

real/anna 19409 20403
real/ben-raytrace 6431 6937
real/bspt 4019 4287
real/cacheprof 6325 6633
real/compress 798 839
real/compress2 2514 2876
real/eff/CS 87 87
real/eff/CSD 43 43
real/eff/FS 74 75
real /eff /S 10 10
real/eff/VS 93 96
real/eff/VSD 32 32
real/eff/VSM 220 220
real /fem 3375 3665
real /fluid 8740 9437
real /fulsom 4512 4812
real/gamteb 1571 1771
real/gg 3719 3858
real/grep 1387 1469
real/hidden 2441 2572
real /hpg 3297 3390
real/infer 2383 2418
real /lift 1883 1933
real/linear 3018 3172
real /maillist 187 198
real/mkhprog 564 593
real/parser 4875 5281
real /pic 1416 1515
real /prolog 1208 1243
real/reptile 3486 3631
real/rsa 157 168
real/scs 4342 4810
real /smallpt 1871 2090
real /symalg 2143 2320
real/veritas 18766 19667

Table 1: Unique vregs before SSA construction and after SSA destruction

5.2 Spill Code

GHC's graph coloring register allocator uses a very simplistic spill heuristic, namely it
will always spill the longest live range. This worked unexpectedly well so far, possibly
because the disjoint live ranges will be longer on average. Therefore, a modified version
was tested, using the classic cost function by Chaitin, cost(n)/deg(n), where deg(n) is
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the degree of node n in the conflict graph and

cost(n) = Z cx* freq(I)

I€Instructions
¢ number of defs and uses of n in I

with freq(I) being the expected execution frequency of instruction I.

Table 2/ shows spill numbers for the graph coloring register allocator. graph is the baseline,
graph-ssa with [SSA| transformation and chaitin-ssa with [SSA| transformation and the
Chaitin spill heuristic. Spills includes STORE and LOAD instructions inserted, reg-reg
includes all remaining register-register moves. The median reduction of spills with SSA
transformation for real is -7.09%, of reg-reg moves -4.82%. Using the Chaitin spill
heuristic, median reduction of spills is zero and of reg-reg moves -5.42%. This seems

to be biased by the real/eff benchmarks, which didn’t spill any registers to begin with.

Excluding all programs in real, which never spilled across all test configurations, the
median change of spills for graph-ssa becomes -21.67% and -27.50% for chaitin-ssa.

The median of changes in spills - excluding never spilling programs - for the whole
benchmark suite is -20% for graph-ssa and -24.54% for chaitin-ssa. reg-reg moves over
all programs changed by -5.4% for graph-ssa and -5.67% for chaitin-ssa.

Changes for the linear scan register allocator, which has been tuned and optimized more,
are less pronounced and can be seen in Table 3 The mean change in spills is actually
zero and for reg-reg moves a negligible increase of 0.34%. This does not change when
excluding never spilling programs.

For the entire benchmark suite, median change in both spills and reg-reg moves is zero.
When excluding never spilling programs, the median change in spills becomes -1.09%.

5.3 Runtime

To evaluate runtime performance, CPU cycles as measured by the hardware performance
counters were collected. The programs in the real/eff subgroup were excluded, as they did
not see any changes in unique names or spills. Due to their small size (e.g., real/eff/VSD
has less than 30 lines) and short runtime (e.g., 12ms), any changes in runtime are most
likely just noise.

Runtime performance with the graph coloring allocator shows good improvements for
some benchmarks, like real/ben-raytrace (-8.06%), real/hpg (-3.35%) and real/linear
(-3.63%). Of these programs, only real/ben-raytrace also exhibits a big reduction in spills,
whereas real/linear even sees a slight increase in spills (but reduction in reg-reg moves of
-6.62%).

Several benchmarks see increases in runtime, e.g., real/grep (+3.09%), real/infer (+6.58%)
and real/reptile (+5.44%). A possible explanation for real/grep is the observed increase of
3.66% in cache misses. This benchmark even shows an improved runtime by -6.02% when
using the Chaitin spill heuristic (-1.22% cache misses). real/infer shows performance

17
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graph graph-ssa chaitin-ssa

spills | reg-reg spills | reg-reg spills | reg-reg
real/anna 337 7077 211 6713 205 6690
real/ben-raytrace 1173 1655 767 1588 727 1589
real /bspt 73 1160 60 1130 90 1116
real/cacheprof 86 2445 72 2350 84 2343
real /compress 20 256 20 238 24 239
real /compress2 874 551 592 475 532 514
real/eft/CS 0 64 0 64 0 64
real/eff/CSD 0 22 0 22 0 22
real/eff/F'S 0 28 0 26 0 26
real/eff/S 0 5 0 5 0 5
real/eff/VS 0 49 0 49 0 47
real/eff/VSD 0 10 0 10 0 10
real /eff/VSM 0 64 0 58 0 58
real/fem 253 759 187 699 174 679
real/fluid 656 1933 484 1790 402 1768
real /fulsom 0 1012 0 943 0 945
real/gamteb 349 359 236 347 225 334
real/gg 26 1430 16 1364 18 1365
real/grep 10 576 10 565 12 565
real /hidden o1 728 45 687 40 681
real/hpg 9 928 7 868 7 861
real/infer 10 772 10 748 12 748
real/lift 0 504 0 487 0 487
real/linear 191 998 197 936 46 926
real /maillist 10 94 10 87 12 87
real/mkhprog 0 241 0 229 0 225
real /parser 289 1643 143 1531 133 1526
real /pic 725 284 677 280 633 316
real/prolog 16 469 15 459 17 459
real /reptile 61 1570 50 1533 24 1532
real/rsa 10 109 10 89 12 89
real/scs 2109 1238 1780 1198 1720 1209
real/smallpt 364 546 200 566 204 562
real/symalg 37 1108 34 1057 30 1051
real /veritas 70 6500 54 6140 76 6135

Table 2: Inserted spills and remaining reg-reg moves for graph coloring register allocator

regressions for both heuristics, for graph-ssa possibly because of an increase in cache
misses by 1.04%, whereas chaitin-ssa inserted two additional spills.

The average change in runtime is small. To minimize the impact of changes to very
short running programs (less than a second), versus very long running programs (e.g., 58
seconds), we weight each value by the fraction of total runtime of real it contributes. The
weighted average change in runtime for graph-ssa is -1.90% and -2.25% for chaitin-ssa.
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linear linear-ssa

spills | reg-reg spills | reg-reg
real /anna 113 9106 115 9146
real/ben-raytrace 558 2495 587 2444
real /bspt 52 1803 78 1812
real/cacheprof 72 3683 69 3697
real/compress 24 342 24 343
real /compress2 254 818 290 790
real/eft/CS 0 83 0 83
real/eff/CSD 0 30 0 30
real/eft/FS 0 33 0 33
real/eff/S 0 7 0 7
real/eff/VS 0 54 0 54
real/eff/VSD 0 14 0 14
real /eff/VSM 0 64 0 64
real/fem 92 1332 92 1329
real/fluid 353 2960 398 2939
real/fulsom 0 1245 0 1250
real/gamteb 151 583 147 585
real/gg 18| 1799 18| 1797
real/grep 12 715 12 718
real /hidden 40 977 40 980
real/lipg i 1238 1 1247
real /infer 12 949 12 952
real/lift 0 629 0 634
real/linear 40 1337 27 1317
real/maillist 12 125 12 130
real/mkhprog 0 305 0 305
real/parser 72 2435 72 2449
real/pic 428 594 396 619
real/prolog 14 580 17 582
real /reptile 32 2051 36 2050
real/rsa 12 110 12 115
real/scs 1264 2261 1117 2243
real/smallpt 110 754 108 820
real /symalg 9 1498 11 1515
real /veritas 76 8490 76 8464

Table 3: Inserted spills and remaining reg-reg moves for linear scan register allocator

Chaitin’s heuristic performs generally better than the simplistic live range length based
one. A notable outlier is real/reptile. While we see a performance degradation for both
heuristics, Chaitin’s actually leads to a a reduction of 60% in spills. Spill placement may
be at fault though, with a 3% increase in cache misses. real/veritas’s increased runtime
can be explained by the 8.5% increase in spills.

Table 5/ shows the runtime benchmarks using the linear scan allocator. There are some
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graph | std. err. | graph-ssa (rel) | std. err. | chaitin-ssa (rel) | std. err.
real /anna 4.98E9 0.30% -0.22% 0.20% -0.63% 0.30%
real/ben-raytrace || 6.35E11 | 5.6e-2% -8.06% 0.004 -7.81% 0.40%
real /bspt 3.53E11 0.10% -0.57% 0.10% -0.27% 0.10%
real /cacheprof 3.26E12 0.10% -2.23% 0.30% -4.21% 0.30%
real /compress 2.41E13 0.30% -0.29% 0.20% -0.17% 0.30%
real/compress2 2.84E14 0.30% -0.50% 0.30% -2.01% 0.20%
real /fem 3.34E15 0.20% -0.72% 0.30% -2.29% 0.10%
real /fluid 2.72E16 0.10% 1.12% | 2.3e-2% 0.27% 0.20%
real /fulsom 1.82E17 | 8.4e-2% -0.63% 0.002 -1.51% 0.60%
real/gamteb 4.83E18 0.20% 0.13% 0.20% -1.74% 0.20%
real/gg 3.79E19 0.20% -2.53% 0.30% -2.89% 0.60%
real/grep 3.29E20 0.20% 3.09% | 6.3e-2% -6.02% 0.20%
real /hidden 4.43E21 0.10% -3.11% 0.20% 1.26% 0.20%
real /hpg 3.07E22 0.50% -3.35% 0.10% -4.36% | 5.4e-2%
real /infer 3.87E23 0.70% 6.58% 0.20% 5.91% 3.10%
real /lift 3.10E24 | 5.5e-2% -0.67% | 8.8e-2% -2.09% 0.20%
real/linear 5.78E25 | 2.9e-2% -3.63% | 9.7e-2% -1.72% 0.20%
real /maillist 2.86E26 0.50% 4.79% 0.80% -0.65% 0.30%
real/mkhprog 1.66E25 1.40% 1.04% 0.90% 0.43% 0.80%
real/parser 2.76E28 0.20% -2.44% 0.10% 1.76% 0.10%
real /pic 1.92E29 0.30% 0.49% 0.20% -2.15% 0.60%
real /prolog 3.56E30 | 8.2e-2% 0.50% 0.002 -1.16% 0.10%
real /reptile 2.52E31 0.20% 5.44% 0.20% 4.19% 0.10%
real /rsa 2.76E32 | 5.5¢-2% 0.74% | 5.6e-2% 1.40% 0.10%
real/scs 2.80E33 0.20% -0.14% 0.10% -0.20% 0.20%
real /smallpt 1.77E36 | 4.6e-2% -0.54% | 6.5e-2% -0.96% | 4.3e-2%
real /symalg 3.16E35 0.20% 0.08% | 2.7e-2% 0.14% | 7.4e-2%
real /veritas 2.67TE36 0.30% 0.53% | 9.8e-2% 2.20% 0.30%
Geo. mean -0.22% -0.94%
Median 20.26% 0.81%
Weighted avg. -1.90% -2.25%

Table 4: CPU cycles for real with graph coloring register allocator
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improvements to real/hidden, real/infer and also to real/hpg, despite only small changes
to number of spills. Of these, only real/hpg saw a drop of -4% in cache misses. The result
of real/infer appears to be spurious though, given the high standard error for baseline
runtime and the fact, that earlier runs did not show such an increase for this program.

real/cacheprof, real/linear and real/mkhprog showed significant increases in runtime.
Of these, real/cacheprof did not see big changes in spill numbers, yet this result was
reproducible. Spill-code placement may be to blame, as an increase of 1.53% in cache
misses can be seen. The case is similar for real/linear, despite the reduction in spills.
real/mkhprog’s result may be bogus, as this program did not spill, saw no changes to
reg-reg moves, an actual decrease in cache misses and an elevated standard error for the
linear-ssa measurement.

The average runtime has not changed significantly, both for real and the whole benchmark
suite.

5.4 Compile Time

To measure the impact on compile times, the library version of Haskell’s package manager
Cabal was compiled with maximum optimizations (-02) and again with the addition of
SSA| transformation. Containing around 100,000 lines of Haskell code, it takes sufficiently
long to compile to notice any changes in compile times. The observed increase in compile
times is quite considerable, at almost 30%. It’s important to note though, that the
implementation has not been particularly optimized.

21



d.

22

linear | std. err. | linear-ssa (rel) | std. err.
real/anna 5.01E9 0.20% -0.66% 0.30%
real/ben-raytrace || 5.71E11 | 2.0e-2% -1.34% | 1.9e-2%
real/bspt 3.52E11 0.20% 0.21% 0.20%
real/cacheprof 3.08E12 0.30% 3.85% 0.40%
real /compress 2.41E13 0.20% 0.50% 0.20%
real/compress2 2.86E14 | 5.5e-2% -2.09% 0.20%
real /fem 3.29E15 | 7.9e-2% -1.78% 0.40%
real/fluid 2.74E16 0.30% -1.19% 0.10%
real /fulsom 1.77E17 | 6.1e-2% 2.03% 0.10%
real/gamteb 4.76E18 0.30% 1.96% | 6.7e-2%
real/gg 338E10 | 0.10% 0.03% | 0.30%
real/grep 3.27E20 0.10% 1.38% 0.20%
real /hidden 4.53E21 | 4.1e-2% -4.48% 0.20%
real /hpg 3.10E22 0.40% -2.58% | 6.3e-2%
real /infer 3.93E23 3.00% -3.21% 0.20%
real /lift 3.06E24 | 8.8e-2% 1.44% 0.10%
real/linear 5.50E25 | 5.5e-2% 4.10% 0.10%
real /maillist 2.82E26 0.50% 1.11% 0.40%
real /mkhprog 1.64E25 0.70% 3.29% 1.30%
real /parser 2.76E28 0.20% 0.60% | 5.8e-2%
real /pic 1.94E29 0.50% -1.09% 0.40%
real/prolog 3.56E30 0.20% -2.23% 0.20%
real/reptile 2.59E31 0.30% 0.12% 0.10%
real /rsa 2.77TE32 | 7.7e-2% 0.62% | 6.4e-2%
real /scs 2.74E33 0.10% -0.34% 0.40%
real /smallpt 1.81E36 0.10% -0.57% 0.20%
real /symalg 3.16E35 | 7.0e-2% 0.08% | 1.7e-2%
real /veritas 2.69E36 0.10% 1.97% 0.30%
Geo. Mean 0.04%
Median 0.10%
Weighted avg. -0.56%

Table 5: CPU cycles for real with linear scan register allocator




CHAPTER

Conclusions and Future Work

Static Single Assignment|form intermediate representations are a fundamental technique in
modern compiler construction, providing a sparse representation of data-flow information
and enabling many optimizations in an efficient manner. Even at a late state in the
compilation pipeline, when dealing with native code, SSA|can be very beneficial.

Adding [SSA| transformation to (GHC/s native code generator effectively performs renum-
bering of disjoint live ranges, facilitating register allocation and leading to reduced spill
code insertion. This is especially pronounced for the graph coloring register allocator. Fur-
thermore it enables future optimizations, such as sparse conditional constant propagation
or live range splitting in the register allocator.

However, more work needs to be done to increase efficiency of the implementation. Using
the same base algorithm by Cytron et al., semi-pruned [SSA| form could be computed
more cheaply, followed by liveness analysis on [SSA form. The approach by Braun et
al. [BBH"13| also promises to be more efficient, not requiring prior liveness analysis or
computation of dominance frontiers. Another advantage is the fact, that it produces
pruned [SSA| directly.

To enable further optimizations, it may also become necessary to model machine instruc-
tion constraints.
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